The role of abscisic acid and water stress in root herbivore-induced leaf resistance.

نویسندگان

  • Matthias Erb
  • Tobias G Köllner
  • Jörg Degenhardt
  • Claudia Zwahlen
  • Bruce E Hibbard
  • Ted C J Turlings
چکیده

• Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changing the Physiological Response and Water Relationships in Sweet Pepper When Stopping the Activity of Root Aquaporin in Drought Stress

Aquaporins are the main proteins in the plasma membrane, which facilitates the movement of water, carbon dioxide, and other small soluble material through the membrane. The aim of this study was to investigate the role of root acuporine on the physiological, biochemical and biochemical changes and water relations under drought stress. For this purpose, a study was conducted in a completely rand...

متن کامل

Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance.

Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and th...

متن کامل

The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed ro...

متن کامل

The site of water stress governs the pattern of ABA synthesis and transport in peanut

Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed "leaf stress" or "root stress", respectively. Immunoenzyme localizat...

متن کامل

Physiological and biochemical responses of Hypericum perforatum to salt stress and salicylic acid spraying

Salinity is one of the main obstacles to the successful production of agricultural products. Hormonal compounds such as salicylic acid (SA) as plant growth regulators can have different physiological and biochemical effects in plants under salt stress. In present research, the effects of different concentrations of sodium chloride (2, 6 and 10 dS/m) and foliar application of SA (0, 0.25 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 189 1  شماره 

صفحات  -

تاریخ انتشار 2011